Single Organic Droplet Collision Voltammogram via Electron Transfer Coupled Ion Transfer

Tutkimustuotos: Lehtiartikkelivertaisarvioitu


  • Cheng Liu
  • Pekka Peljo
  • Xinjian Huang
  • Wenxue Cheng
  • Lishi Wang
  • Haiqiang Deng


  • South China University of Technology
  • Hebrew University of Jerusalem
  • Ecole Polytechnique Federale de Lausanne


Single-emulsion toluene oil droplets (femtoliter) containing a hydrophobic redox probe that are dispersed in water stochastically collide with an ultramicroelectrode (UME). The fast-scan cyclic voltammetry (FSCV) or Fourier-transformed sinusoidal voltammetry (FTSV) is applied: the UME was scanned with a fast, repetitive triangular, or sinusoidal potential, and its current in time/frequency domains were monitored. The electron transfer at the UME/oil interface is coupled with ion transfer at the oil/water interface. Thus, the obtained transient voltammograms of a myriad of ions were used to estimate thermodynamics of ion transfer at the toluene/water interface. Additionally, the single-droplet voltammogram combined with finite element simulations reveal the droplet's size and shape distributions. Four collision mechanisms with new physical insights were also uncovered via comprehensive analysis of phase angle in the frequency domain, time domain FSCVs, and finite element simulations.


JulkaisuAnalytical Chemistry
TilaJulkaistu - 5 syyskuuta 2017
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

ID: 31512419