Simultaneous signal subspace rank and model selection with an application to single-snapshot source localization

Muhammad Naveed Tabassum, Esa Ollila

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

This paper proposes a novel method for model selection in linear regression by utilizing the solution path of `1 regularized least-squares (LS) approach (i.e., Lasso). This method applies the complex-valued least angle regression and shrinkage (c-LARS) algorithm coupled with a generalized information criterion (GIC) and referred to as the c-LARS-GIC method. c-LARS-GIC is a two-stage procedure, where firstly precise values of the regularization parameter, called knots, at which a new predictor variable enters (or leaves) the active set are computed in the Lasso solution path. Active sets provide a nested sequence of regression models and GIC then selects the best model. The sparsity order of the chosen model serves as an estimate of the model order and the LS fit based only on the active set of the model provides an estimate of the regression parameter vector. We then consider a source localization problem, where the aim is to detect the number of impinging source waveforms at a sensor array as well to estimate their direction-of-arrivals (DoAs) using only a single-snapshot measurement. We illustrate via simulations that, after formulating the problem as a grid-based sparse signal reconstruction problem, the proposed c-LARS-GIC method detects the number of sources with high probability while at the same time it provides accurate estimates of source locations.

AlkuperäiskieliEnglanti
Otsikko2018 26th European Signal Processing Conference, EUSIPCO 2018
KustantajaIEEE
Sivut1592-1596
Sivumäärä5
Vuosikerta2018-September
ISBN (elektroninen)978-9-0827-9701-5
ISBN (painettu)978-1-5386-3736-4
DOI - pysyväislinkit
TilaJulkaistu - 29 marrask. 2018
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEuropean Signal Processing Conference - Rome, Italia
Kesto: 3 syysk. 20187 syysk. 2018
Konferenssinumero: 26

Julkaisusarja

NimiEuropean Signal Processing Conference
ISSN (painettu)2219-5491
ISSN (elektroninen)2076-1465

Conference

ConferenceEuropean Signal Processing Conference
LyhennettäEUSIPCO
Maa/AlueItalia
KaupunkiRome
Ajanjakso03/09/201807/09/2018

Sormenjälki

Sukella tutkimusaiheisiin 'Simultaneous signal subspace rank and model selection with an application to single-snapshot source localization'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
  • Robusteja tilastollisia menetelmiä hyvin moniulotteiselle datalle

    Ollila, E. (Vastuullinen tutkija), Raninen, E. (Projektin jäsen), Basiri, S. (Projektin jäsen), Tabassum, M. N. (Projektin jäsen) & Mian, A. (Projektin jäsen)

    01/09/201631/12/2020

    Projekti: Academy of Finland: Other research funding

Siteeraa tätä