Similarity Metrics for Late Reverberation

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Automatic tuning of reverberation algorithms relies on the optimization of a loss function. While general audio similarity metrics are useful, they are not optimized for the specific statistical properties of reverberation in rooms. This paper presents two novel metrics for assessing the similarity of late reverberation in room impulse responses. These metrics are differentiable and can be utilized within a machine-learning framework. We compare the performance of these metrics to two popular audio metrics using a large dataset of room impulse responses encompassing various room configurations and microphone positions. The results indicate that the proposed functions based on averaged power and frequency-band energy decay outperform the baselines with the former exhibiting the most suitable profile towards the minimum. The proposed work holds promise as an improvement to the design and evaluation of reverberation similarity metrics.

AlkuperäiskieliEnglanti
OtsikkoConference Record of the 58th Asilomar Conference on Signals, Systems and Computers, ACSSC 2024
ToimittajatMichael B. Matthews
KustantajaIEEE
Sivut1409-1413
Sivumäärä5
ISBN (elektroninen)979-8-3503-5405-8
DOI - pysyväislinkit
TilaJulkaistu - 2025
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaAsilomar Conference on Signals, Systems and Computers - Pacific Grove, Yhdysvallat
Kesto: 27 lokak. 202430 lokak. 2024

Julkaisusarja

NimiConference Record - Asilomar Conference on Signals, Systems and Computers
ISSN (painettu)1058-6393

Conference

ConferenceAsilomar Conference on Signals, Systems and Computers
Maa/AlueYhdysvallat
KaupunkiPacific Grove
Ajanjakso27/10/202430/10/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Similarity Metrics for Late Reverberation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä