Severity classification of Parkinson's disease from speech using single frequency filtering-based features

Sudarsana Kadiri, Manila Kodali, Paavo Alku

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

1 Sitaatiot (Scopus)
15 Lataukset (Pure)

Abstrakti

Developing objective methods for assessing the severity of Parkinson's disease (PD) is crucial for improving the diagnosis and treatment. This study proposes two sets of novel features derived from the single frequency filtering (SFF) method: (1) SFF cepstral coefficients (SFFCC) and (2) MFCCs from the SFF (MFCC-SFF) for the severity classification of PD. Prior studies have demonstrated that SFF offers greater spectrotemporal resolution compared to the short-time Fourier transform. The study uses the PC-GITA database, which includes speech of PD patients and healthy controls produced in three speaking tasks (vowels, sentences, text reading). Experiments using the SVM classifier revealed that the proposed features outperformed the conventional MFCCs in all three speaking tasks. The proposed SFFCC and MFCC-SFF features gave a relative improvement of 5.8% & 2.3% for the vowel task, 7.0% & 1.8% for the sentence task, and 2.4% & 1.1% for the read text task, in comparison to MFCC features.

AlkuperäiskieliEnglanti
OtsikkoProceedings of Interspeech'23
KustantajaInternational Speech Communication Association (ISCA)
Sivut2393-2397
Sivumäärä5
Vuosikerta2023-August
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInterspeech - Dublin, Irlanti
Kesto: 20 elok. 202324 elok. 2023

Julkaisusarja

NimiInterspeech
KustantajaInternational Speech Communication Association
ISSN (elektroninen)2958-1796

Conference

ConferenceInterspeech
Maa/AlueIrlanti
KaupunkiDublin
Ajanjakso20/08/202324/08/2023

Sormenjälki

Sukella tutkimusaiheisiin 'Severity classification of Parkinson's disease from speech using single frequency filtering-based features'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä