Abstrakti
Robot control for tactile feedback based manip-ulation can be difficult due to modeling of physical contacts, partial observability of the environment, and noise in perception and control. This work focuses on solving partial observability of contact-rich manipulation tasks as a Sequence-to-Sequence (Seq2Seq) Imitation Learning (IL) problem. The proposed Seq2Seq model first produces a robot-environment interaction sequence to estimate the partially observable environment state variables, and then, the observed interaction sequence is transformed to a control sequence for the task itself. The proposed Seq2Seq IL for tactile feedback based manipulation is experimentally validated on a door-open task in a simulated environment and a snap-on insertion task with a real robot. The model is able to learn both tasks from only 50 expert demonstrations while state-of-the-art reinforcement learning and imitation learning methods fail.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings - ICRA 2023 |
Alaotsikko | IEEE International Conference on Robotics and Automation |
Kustantaja | IEEE |
Sivut | 5829-5836 |
Sivumäärä | 8 |
ISBN (elektroninen) | 979-8-3503-2365-8 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2023 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Conference on Robotics and Automation - ExCeL Exhibition Center, London, Iso-Britannia Kesto: 29 toukok. 2023 → 2 kesäk. 2023 https://www.icra2023.org |
Conference
Conference | IEEE International Conference on Robotics and Automation |
---|---|
Lyhennettä | ICRA |
Maa/Alue | Iso-Britannia |
Kaupunki | London |
Ajanjakso | 29/05/2023 → 02/06/2023 |
www-osoite |