Separating Polarization from Noise: Comparison and Normalization of Structural Polarization Measures

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

1 Sitaatiot (Scopus)
14 Lataukset (Pure)

Abstrakti

Quantifying the amount of polarization is crucial for understanding and studying political polarization in political and social systems. Several methods are used commonly to measure polarization in social networks by purely inspecting their structure. We analyse eight of such methods and show that all of them yield high polarization scores even for random networks with similar density and degree distributions to typical real-world networks. Further, some of the methods are sensitive to degree distributions and relative sizes of the polarized groups. We propose normalization to the existing scores and a minimal set of tests that a score should pass in order for it to be suitable for separating polarized networks from random noise. The performance of the scores increased by 38%-220% after normalization in a classification task of 203 networks. Further, we find that the choice of method is not as important as normalization, after which most of the methods have better performance than the best-performing method before normalization. This work opens up the possibility to critically assess and compare the features and performance of different methods for measuring structural polarization.

AlkuperäiskieliEnglanti
Artikkeli115
Sivumäärä33
JulkaisuProceedings of the ACM on Human-Computer Interaction
Vuosikerta6
NumeroCSCW1
DOI - pysyväislinkit
TilaJulkaistu - 7 huhtik. 2022
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Separating Polarization from Noise: Comparison and Normalization of Structural Polarization Measures'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä