Semiconductor parameter extraction via current-voltage characterization and Bayesian inference methods

Rachel C. Kurchin, Jeremy R. Poindexter, Daniil Kitchaev, Ville Vähänissi, Carlos Del Cañizo, Liu Zhe, Hannu S. Laine, Chris Roat, Sergiu Levcenco, Gerbrand Ceder, Tonio Buonassisi

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

1 Sitaatiot (Scopus)
212 Lataukset (Pure)

Abstrakti

Defects in semiconductors, although atomistic in scale and often scarce in concentration,frequently represent the performance-limiting factor in optoelectronic devices such as solar cells. However, due to this scale and scarcity, direct experimental characterization of defectsis technically challenging, timeconsuming, and expensive. Even so, the fact that defects can limit device performance suggests that device-level characterization should be able to lend insight into their properties. In this work, we use Bayesian inference to demonstrate a way to relate experimental device measurements with defect properties (as well as other materials properties affected by the presence of defects, such as minority-carrier lifetime). We apply this method to solve the 'inverse problem' to a forward device model - namely, determining which input parameters to the model produce the measured electrical output. This approach has distinct advantages over direct characterization. First, a single set of measurements can beused to determine many parameters (the number of which, in principle, is limited only by the computingresources available), saving time and cost of facilities and equipment. Second, sincemeasurements are performed on materials and interfaces in their relevant device geometries (vs.separately prepared samples), the determined parameters are guaranteed to be physically relevant. We demonstrate application of this method to both tin monosulfide and silicon solar cellsand discuss potential for future application in a broader array of systems.

AlkuperäiskieliEnglanti
Otsikko2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)
KustantajaIEEE
Sivut3271-3275
Sivumäärä5
ISBN (elektroninen)9781538685297
DOI - pysyväislinkit
TilaJulkaistu - 26 marrask. 2018
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaWorld Conference on Photovoltaic Energy Conversion - Waikoloa Village, Yhdysvallat
Kesto: 10 kesäk. 201815 kesäk. 2018
http://www.wcpec7.org/WCPEC-7/

Julkaisusarja

NimiWorld Conference on Photovoltaic Energy Conversion
ISSN (painettu)0160-8371

Conference

ConferenceWorld Conference on Photovoltaic Energy Conversion
LyhennettäWCPEC
Maa/AlueYhdysvallat
KaupunkiWaikoloa Village
Ajanjakso10/06/201815/06/2018
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Semiconductor parameter extraction via current-voltage characterization and Bayesian inference methods'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä