Semi-invertible Convolutional Neural Network for Overall Survival Prediction in Head and Neck Cancer

Saif Eddine Khelifa, Lyes Khelladi, Miloud Bagaa, Yassine Hadjadj-Aoul

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

Abstrakti

The paper addresses the issue of overall survival prediction in head and neck cancer as an effective mean of improving clinical diagnosis and treatment planning. A new solution is proposed using semi-invertible convolutional networks. Our model exploits the 3D features of computed tomography (CT) scans to enrich the dataset used in the learning phase and thereby improve the prediction accuracy. This is achieved by designing a first architecture featuring a combination of a CNN classifier with a fully convolutional network pre-processor. The latter has been replaced in the second solution by an invertible network to deal with the memory constraints noticed in the first architecture. Obtained results showed that both architectures have led to considerable improvements in terms of prediction accuracy (0.75) compared to state-of-the-art solutions.

AlkuperäiskieliEnglanti
OtsikkoICC 2022 - IEEE International Conference on Communications
KustantajaIEEE
Sivut4649-4654
Sivumäärä6
ISBN (elektroninen)978-1-5386-8347-7
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIEEE International Conference on Communications - Seoul, Etelä-Korea
Kesto: 16 toukok. 202220 toukok. 2022

Julkaisusarja

NimiIEEE International Conference on Communications
Vuosikerta2022-May
ISSN (painettu)1550-3607
ISSN (elektroninen)1938-1883

Conference

ConferenceIEEE International Conference on Communications
LyhennettäICC
Maa/AlueEtelä-Korea
KaupunkiSeoul
Ajanjakso16/05/202220/05/2022

Sormenjälki

Sukella tutkimusaiheisiin 'Semi-invertible Convolutional Neural Network for Overall Survival Prediction in Head and Neck Cancer'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä