Semi-blind independent component analysis of functional MRI elicited by continuous listening to music

Tuomas Puolivali, Fengyu Cong, Vinoo Alluri, Qiu Hua Lin, Petri Toiviainen, Asoke K. Nandi, Elvira Brattico, Tapani Ristaniemi

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

5 Sitaatiot (Scopus)

Abstrakti

This study presents a method to analyze blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signals associated with listening to continuous music. Semi-blind independent component analysis (ICA) was applied to decompose the fMRI data to source level activation maps and their respective temporal courses. The unmixing matrix in the source separation process of ICA was constrained by a variety of acoustic features derived from the piece of music used as the stimulus in the experiment. This allowed more stable estimation and extraction of more activation maps of interest compared to conventional ICA methods.

AlkuperäiskieliEnglanti
Otsikko2013 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2013 - Proceedings
Sivut1310-1314
Sivumäärä5
DOI - pysyväislinkit
TilaJulkaistu - 18 lokak. 2013
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIEEE International Conference on Acoustics, Speech, and Signal Processing - Vancouver, Kanada
Kesto: 26 toukok. 201331 toukok. 2013
Konferenssinumero: 38

Julkaisusarja

NimiInternational Conference on Acoustics Speech and Signal Processing ICASSP
ISSN (painettu)1520-6149

Conference

ConferenceIEEE International Conference on Acoustics, Speech, and Signal Processing
LyhennettäICASSP
Maa/AlueKanada
KaupunkiVancouver
Ajanjakso26/05/201331/05/2013

Sormenjälki

Sukella tutkimusaiheisiin 'Semi-blind independent component analysis of functional MRI elicited by continuous listening to music'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä