Abstrakti
This study presents a method to analyze blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signals associated with listening to continuous music. Semi-blind independent component analysis (ICA) was applied to decompose the fMRI data to source level activation maps and their respective temporal courses. The unmixing matrix in the source separation process of ICA was constrained by a variety of acoustic features derived from the piece of music used as the stimulus in the experiment. This allowed more stable estimation and extraction of more activation maps of interest compared to conventional ICA methods.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2013 - Proceedings |
Sivut | 1310-1314 |
Sivumäärä | 5 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 18 lokak. 2013 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | IEEE International Conference on Acoustics, Speech, and Signal Processing - Vancouver, Kanada Kesto: 26 toukok. 2013 → 31 toukok. 2013 Konferenssinumero: 38 |
Julkaisusarja
Nimi | International Conference on Acoustics Speech and Signal Processing ICASSP |
---|---|
ISSN (painettu) | 1520-6149 |
Conference
Conference | IEEE International Conference on Acoustics, Speech, and Signal Processing |
---|---|
Lyhennettä | ICASSP |
Maa/Alue | Kanada |
Kaupunki | Vancouver |
Ajanjakso | 26/05/2013 → 31/05/2013 |
Sormenjälki
Sukella tutkimusaiheisiin 'Semi-blind independent component analysis of functional MRI elicited by continuous listening to music'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Laitteet
-
Aalto NeuroImaging Infrastructure
Veikko Jousmäki (Manager)
Perustieteiden korkeakouluLaitteistot/tilat: Facility