Seizing your market share: Deciphering the role of visual branding with deep residual networks

Yijing Li, Eric T.K. Lim, Hefu Liu, Yong Liu

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Drawing on a well-accepted classification of brand experience, this study attempts to unravel how service vendors could harness images to profile their service experience and in turn, differentiate themselves from competitors. Specifically, we advance four distinct visual cues as focal disseminators of brand experience consumers would come to expect during service consumption. We then employ deep learning techniques to extract these experience-related stimuli from the portal images of over 282,000 service offerings from a leading service e-tailing platform by training various deep residual networks on a variety of annotated image datasets. We further explore the impact of the derived image features in amassing market share through multinomial logit market-share modeling. By attesting to the power of visual cues in branding service experience, this study not only adds to contemporary knowledge on the criticality of communicating service experience, but it also yields actionable prescriptions for achieving service branding online.

AlkuperäiskieliEnglanti
OtsikkoICIS 2019 Proceedings
KustantajaAssociation for Information Systems
ISBN (elektroninen)9780996683197
TilaJulkaistu - 1 tammik. 2020
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Information Systems - Munich, Saksa
Kesto: 15 jouluk. 201918 jouluk. 2019
Konferenssinumero: 40
https://icis2019.aisconferences.org

Julkaisusarja

Nimi40th International Conference on Information Systems, ICIS 2019

Conference

ConferenceInternational Conference on Information Systems
LyhennettäICIS
Maa/AlueSaksa
KaupunkiMunich
Ajanjakso15/12/201918/12/2019
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Seizing your market share: Deciphering the role of visual branding with deep residual networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä