Seeking Flow from Fine-Grained Log Data

Benjamin Ultan Cowley, Arto Hellas, Petri Ihantola, Juho Leinonen, Michiel Spape

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

Abstrakti

Flow is the experience of deep absorption in a demanding, intrinsically-motivating task conducted with skill. We consider how to measure behavioural correlates of flow from fine-grained process data extracted from programming environments. Specifically, we propose measuring affective factors related to flow non-intrusively based on log data. Presently, such affective factors are typically measured intrusively (by self-report), which naturally will break the flow. We evaluate our approach in a pilot study, where we use log data and survey data collected from an introductory programming course. The log data is fine-grained, containing timestamped actions at the keystroke level from the process of solving programming assignments, while the survey data has been collected at the end of every completed assignment. The survey data in the pilot study comprises of Likert-like items measuring perceived educational value, perceived difficulty, and students' self-reported focus when solving the assignments. We study raw and derived log data metrics, by looking for relationships between the metrics and the survey data. We discuss the results of the pilot study and provide suggestions for future work related to non-intrusive measures of programmer affect.
AlkuperäiskieliEnglanti
OtsikkoProceedings - 2022 ACM/IEEE 44th International Conference on Software Engineering
AlaotsikkoSoftware Engineering Education and Training, ICSE-SEET 2022
KustantajaIEEE
Sivut247-253
Sivumäärä7
ISBN (elektroninen)9781665495929
DOI - pysyväislinkit
TilaJulkaistu - 13 kesäk. 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaInternational Conference on Software Engineering: Software Engineering Education and Training - Pittsburgh, Yhdysvallat
Kesto: 21 toukok. 202229 toukok. 2022
Konferenssinumero: 44
https://conf.researchr.org/home/icse-2022

Conference

ConferenceInternational Conference on Software Engineering: Software Engineering Education and Training
LyhennettäICSE-SEET
Maa/AlueYhdysvallat
KaupunkiPittsburgh
Ajanjakso21/05/202229/05/2022
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Seeking Flow from Fine-Grained Log Data'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä