Abstrakti
We study the geometry of the secant and tangential variety of a cominuscule and minuscule variety, e.g. a Grassmannian or a spinor variety. Using methods inspired by statistics we provide an explicit local isomorphism with a product of an affine space with a variety which is the Zariski closure of the image of a map defined by generalized determinants. In particular, equations of the secant or tangential variety correspond to relations among generalized determinants. We also provide a representation theoretic decomposition of cubics in the ideal of the secant variety of any Grassmannian. (C) 2015 Elsevier Inc. All rights reserved.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 288-312 |
Sivumäärä | 25 |
Julkaisu | Linear Algebra and Its Applications |
Vuosikerta | 481 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 15 syysk. 2015 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |