Secant Cumulants and Toric Geometry

Mateusz Michalek*, Luke Oeding, Piotr Zwiernik

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

We study the secant line variety of the Segre product of projective spaces using special cumulant coordinates adapted for secant varieties. We show that the secant variety is covered by open normal toric varieties. We prove that in cumulant coordinates its ideal is generated by binomial quadrics. We present new results on the local structure of the secant variety. In particular, we show that it has rational singularities and we give a description of the singular locus. We also classify all secant varieties that are Gorenstein. Moreover, generalizing [31], we obtain analogous results for the tangential variety.

AlkuperäiskieliEnglanti
Sivut4019-4063
Sivumäärä45
JulkaisuINTERNATIONAL MATHEMATICS RESEARCH NOTICES
Numero12
DOI - pysyväislinkit
TilaJulkaistu - 2015
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Secant Cumulants and Toric Geometry'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä