Season-Invariant GNSS-Denied Visual Localization for UAVs

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

10 Sitaatiot (Scopus)
93 Lataukset (Pure)

Abstrakti

Localization without Global Navigation Satellite Systems (GNSS) is a critical functionality in autonomous operations of unmanned aerial vehicles (UAVs). Vision-based localization on a known map can be an effective solution, but it is burdened by two main problems: places have different appearance depending on weather and season, and the perspective discrepancy between the UAV camera image and the map make matching hard. In this letter, we propose a localization solution relying on matching of UAV camera images to georeferenced orthophotos with a trained convolutional neural network model that is invariant to significant seasonal appearance difference (winter-summer) between the camera image and map. We compare the convergence speed and localization accuracy of our solution to six reference methods. The results show major improvements with respect to reference methods, especially under high seasonal variation. We finally demonstrate the ability of the method to successfully localize a real UAV, showing that the proposed method is robust to perspective changes.
AlkuperäiskieliEnglanti
Artikkeli9830867
Sivut10232-10239
Sivumäärä8
JulkaisuIEEE Robotics and Automation Letters
Vuosikerta7
Numero4
DOI - pysyväislinkit
TilaJulkaistu - 1 lokak. 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Season-Invariant GNSS-Denied Visual Localization for UAVs'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä