Projekteja vuodessa
Abstrakti
In matrix factorization, available graph side-information may not be well suited for the matrix completion problem, having edges that disagree with the latent-feature relations learnt from the incomplete data matrix. We show that removing these contested edges improves prediction accuracy and scalability. We identify the contested edges through a highly-efficient graphical lasso approximation. The identification and removal of contested edges adds no computational complexity to state-of-the-art graph-regularized matrix factorization, remaining linear with respect to the number of non-zeros. Computational load even decreases proportional to the number of edges removed. Formulating a probabilistic generative model and using expectation maximization to extend graph-regularised alternating least squares (GRALS) guarantees convergence. Rich simulated experiments illustrate the desired properties of the resulting algorithm. On real data experiments we demonstrate improved prediction accuracy with fewer graph edges (empirical evidence that graph side-information is often inaccurate). A 300 thousand dimensional graph with three million edges (Yahoo music side-information) can be analyzed in under ten minutes on a standard laptop computer demonstrating the efficiency of our graph update.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of AAAI-20, AAAI Conference on Artificial Intelligence |
Kustantaja | AAAI Press |
Sivut | 5851-5858 |
Sivumäärä | 8 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 3 huhtik. 2020 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | AAAI Conference on Artificial Intelligence - New York, Yhdysvallat Kesto: 7 helmik. 2020 → 12 helmik. 2020 Konferenssinumero: 34 https://aaai.org/Conferences/AAAI-20/ |
Julkaisusarja
Nimi | Proceedings of the AAAI Conference on Artificial Intelligence |
---|---|
Kustantaja | AAAI Press |
Numero | 4 |
Vuosikerta | 34 |
ISSN (painettu) | 2159-5399 |
ISSN (elektroninen) | 2374-3468 |
Conference
Conference | AAAI Conference on Artificial Intelligence |
---|---|
Lyhennettä | AAAI |
Maa/Alue | Yhdysvallat |
Kaupunki | New York |
Ajanjakso | 07/02/2020 → 12/02/2020 |
www-osoite |
Sormenjälki
Sukella tutkimusaiheisiin 'Scalable Probabilistic Matrix Factorization with Graph-Based Priors'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Päättynyt
-
FiDiPro - Machine Learning for Augmented Science and Knowledge Work
Guvenc, B. (Projektin jäsen), Mamitsuka, H. (Projektin jäsen), Kaski, S. (Vastuullinen tutkija), Gillberg, L. (Projektin jäsen), Eranti, P. (Projektin jäsen), Strahl, J. (Projektin jäsen), Rezaei Yousefi, Z. (Projektin jäsen), Gisbrecht, A. (Projektin jäsen) & Peltonen, J. (Projektin jäsen)
01/01/2015 → 31/12/2018
Projekti: Business Finland: Other research funding