Projekteja vuodessa
Abstrakti
Simulation-based techniques such as variants of stochastic Runge–Kutta are the de facto approach for inference with stochastic differential equations (SDEs) in machine learning. These methods are general-purpose and used with parametric and non-parametric models, and neural SDEs. Stochastic Runge–Kutta relies on the use of sampling schemes that can be inefficient in high dimensions. We address this issue by revisiting the classical SDE literature and derive direct approximations to the (typically intractable) Fokker–Planck–Kolmogorov equation by matching moments. We show how this workflow is fast, scales to high-dimensional latent spaces, and is applicable to scarce-data applications, where a non-parametric SDE with a driving Gaussian process velocity field specifies the model.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Advances in Neural Information Processing Systems 34 pre-proceedings (NeurIPS 2021) |
Kustantaja | Morgan Kaufmann Publishers |
Sivumäärä | 13 |
Tila | Julkaistu - 2021 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | Conference on Neural Information Processing Systems - Virtual, Online Kesto: 6 jouluk. 2021 → 14 jouluk. 2021 Konferenssinumero: 35 https://neurips.cc |
Julkaisusarja
Nimi | Advances in Neural Information Processing Systems |
---|---|
Kustantaja | Morgan Kaufmann Publishers |
ISSN (painettu) | 1049-5258 |
Conference
Conference | Conference on Neural Information Processing Systems |
---|---|
Lyhennettä | NeurIPS |
Kaupunki | Virtual, Online |
Ajanjakso | 06/12/2021 → 14/12/2021 |
www-osoite |
Sormenjälki
Sukella tutkimusaiheisiin 'Scalable inference in SDEs by direct matching of the Fokker–Planck–Kolmogorov equation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.-
Solin Arno /AoF Fellow Salary: Probabilistic principles for latent space exploration in deep learning
01/09/2021 → 31/08/2026
Projekti: Academy of Finland: Other research funding