Abstrakti
We formulate the recovery of a graph signal from noisy samples taken on a subset of graph nodes as a convex optimization problem that balances the empirical error for explaining the observed values and a complexity term quantifying the smoothness of the graph signal. To solve this optimization problem, we propose to combine the alternating direction method of multipliers with a novel denoising method that minimizes total variation. Our algorithm can be efficiently implemented in a distributed manner using message passing and thus is attractive for big data problems over networks.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | SPAWC 2016 - 17th IEEE International Workshop on Signal Processing Advances in Wireless Communications |
Kustantaja | IEEE |
Sivumäärä | 6 |
Vuosikerta | 2016-August |
ISBN (elektroninen) | 9781509017492 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 9 elok. 2016 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Workshop on Signal Processing Advances in Wireless Communications - Edinburgh, Iso-Britannia Kesto: 3 heinäk. 2016 → 6 heinäk. 2016 Konferenssinumero: 17 |
Workshop
Workshop | IEEE International Workshop on Signal Processing Advances in Wireless Communications |
---|---|
Lyhennettä | SPAWC |
Maa/Alue | Iso-Britannia |
Kaupunki | Edinburgh |
Ajanjakso | 03/07/2016 → 06/07/2016 |