Aktiviteetteja vuodessa
Abstrakti
In recent years, machine learning approaches to modelling guitar amplifiers and effects pedals have been widely investigated and have become standard practice in some consumer products. In particular, recurrent neural networks (RNNs) are a popular choice for modelling non-linear devices such as vacuum tube amplifiers and distortion circuitry. One limitation of such models is that they are trained on audio at a specific sample rate and therefore give unreliable results when operating at another rate. Here, we investigate several methods of modifying RNN structures to make them approximately sample rate independent, with a focus on oversampling. In the case of integer oversampling, we demonstrate that a previously proposed delay-based approach provides high fidelity sample rate conversion whilst additionally reducing aliasing. For non-integer sample rate adjustment, we propose two novel methods and show that one of these, based on cubic Lagrange interpolation of a delay-line, provides a significant improvement over existing methods. To our knowledge, this work provides the first in-depth study into this problem.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24) |
Julkaisupaikka | Guildford, UK |
Kustantaja | University of Surrey |
Sivut | 17-24 |
Sivumäärä | 8 |
Vuosikerta | 27 |
Painos | 2024 |
Tila | Julkaistu - 3 syysk. 2024 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Digital Audio Effects - University of Surrey, Guildford, Iso-Britannia Kesto: 3 syysk. 2024 → 7 syysk. 2024 Konferenssinumero: 27 https://dafx24.surrey.ac.uk/ |
Julkaisusarja
Nimi | Proceedings of the International Conference on Digital Audio Effects |
---|---|
ISSN (elektroninen) | 2413-6689 |
Conference
Conference | International Conference on Digital Audio Effects |
---|---|
Lyhennettä | DAFX |
Maa/Alue | Iso-Britannia |
Kaupunki | Guildford |
Ajanjakso | 03/09/2024 → 07/09/2024 |
www-osoite |
Sormenjälki
Sukella tutkimusaiheisiin 'Sample rate independent recurrent neural networks for audio effects processing'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Laitteet
Aktiviteetit
- 2 Isännöity akateeminen vierailu Aalto-yliopistossa
-
Alistair Carson
Välimäki, V. (Host) & Wright, A. (Host)
11 toukok. 2023 → 12 heinäk. 2023Aktiviteetti: Isännöity akateeminen vierailu Aalto-yliopistossa
-
Stefan Bilbao
Välimäki, V. (Host)
31 toukok. 2023 → 15 kesäk. 2023Aktiviteetti: Isännöity akateeminen vierailu Aalto-yliopistossa