Sample rate independent recurrent neural networks for audio effects processing

Alistair Carson*, Alec Wright, Jatin Chowdhury, Vesa Välimäki, Stefan Bilbao

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

20 Lataukset (Pure)

Abstrakti

In recent years, machine learning approaches to modelling guitar amplifiers and effects pedals have been widely investigated and have become standard practice in some consumer products. In particular, recurrent neural networks (RNNs) are a popular choice for modelling non-linear devices such as vacuum tube amplifiers and distortion circuitry. One limitation of such models is that they are trained on audio at a specific sample rate and therefore give unreliable results when operating at another rate. Here, we investigate several methods of modifying RNN structures to make them approximately sample rate independent, with a focus on oversampling. In the case of integer oversampling, we demonstrate that a previously proposed delay-based approach provides high fidelity sample rate conversion whilst additionally reducing aliasing. For non-integer sample rate adjustment, we propose two novel methods and show that one of these, based on cubic Lagrange interpolation of a delay-line, provides a significant improvement over existing methods. To our knowledge, this work provides the first in-depth study into this problem.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 27th International Conference on Digital Audio Effects (DAFx24)
JulkaisupaikkaGuildford, UK
KustantajaUniversity of Surrey
Sivut 17-24
Sivumäärä8
Vuosikerta27
Painos2024
TilaJulkaistu - 3 syysk. 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Digital Audio Effects - University of Surrey, Guildford, Iso-Britannia
Kesto: 3 syysk. 20247 syysk. 2024
Konferenssinumero: 27
https://dafx24.surrey.ac.uk/

Julkaisusarja

NimiProceedings of the International Conference on Digital Audio Effects
ISSN (elektroninen)2413-6689

Conference

ConferenceInternational Conference on Digital Audio Effects
LyhennettäDAFX
Maa/AlueIso-Britannia
KaupunkiGuildford
Ajanjakso03/09/202407/09/2024
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Sample rate independent recurrent neural networks for audio effects processing'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
  • Alistair Carson

    Välimäki, V. (Host) & Wright, A. (Host)

    11 toukok. 202312 heinäk. 2023

    Aktiviteetti: Isännöity akateeminen vierailu Aalto-yliopistossa

  • Stefan Bilbao

    Välimäki, V. (Host)

    31 toukok. 202315 kesäk. 2023

    Aktiviteetti: Isännöity akateeminen vierailu Aalto-yliopistossa

Siteeraa tätä