Abstrakti
In this paper, we propose a method for respiratory rate estimation based on the received signal strength of narrowband radio frequency transceivers. We employ a state-space formulation of periodic Gaussian processes to model the observed variations in the signal strength. This is then used in a Rao-Blackwellized unscented Kalman filter which exploits the linear substructure of the proposed model and thereby greatly improves computational efficiency. The proposed method is evaluated on measurement data from commercially available off the shelf transceivers. It is found that the proposed method accurately estimates the respiratory rate and provides a systematic way of fusing the measurements of asynchronous frequency channels.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 25th European Signal Processing Conference (EUSIPCO) |
Kustantaja | IEEE |
Sivut | 256-260 |
ISBN (elektroninen) | 978-0-9928626-7-1 |
ISBN (painettu) | 978-1-5386-0751-0 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2017 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | European Signal Processing Conference - Kos Island, Greece, Kos, Kreikka Kesto: 28 elok. 2017 → 2 syysk. 2017 Konferenssinumero: 25 https://www.eusipco2017.org https://www.eusipco2017.org/ |
Julkaisusarja
Nimi | European Signal Processing Conference |
---|---|
ISSN (elektroninen) | 2076-1465 |
Conference
Conference | European Signal Processing Conference |
---|---|
Lyhennettä | EUSIPCO |
Maa/Alue | Kreikka |
Kaupunki | Kos |
Ajanjakso | 28/08/2017 → 02/09/2017 |
www-osoite |