RP1M: A Large-Scale Motion Dataset for Piano Playing with Bimanual Dexterous Robot Hands

Yi Zhao*, Le Chen*, Jan Schneider, Quankai Gao, Juho Kannala, Bernhard Schölkopf, Joni Pajarinen, Dieter Büchler

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliConference articleScientificvertaisarvioitu

3 Lataukset (Pure)

Abstrakti

It has been a long-standing research goal to endow robot hands with human-level dexterity. Bimanual robot piano playing constitutes a task that combines challenges from dynamic tasks, such as generating fast while precise motions, with slower but contact-rich manipulation problems. Although reinforcement learning-based approaches have shown promising results in single-task performance, these methods struggle in a multi-song setting. Our work aims to close this gap and, thereby, enable imitation learning approaches for robot piano playing at scale. To this end, we introduce the Robot Piano 1 Million (RP1M) dataset, containing bimanual robot piano playing motion data of more than one million trajectories. We formulate finger placements as an optimal transport problem, thus, enabling automatic annotation of vast amounts of unlabeled songs.

AlkuperäiskieliEnglanti
Sivut5184-5203
Sivumäärä20
JulkaisuProceedings of Machine Learning Research
Vuosikerta270
TilaJulkaistu - 2025
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaConference on Robot Learning - Munich, Saksa
Kesto: 6 marrask. 20249 marrask. 2024
https://www.corl.org/

Sormenjälki

Sukella tutkimusaiheisiin 'RP1M: A Large-Scale Motion Dataset for Piano Playing with Bimanual Dexterous Robot Hands'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä