Rosenbrock's theorem on system matrices over elementary divisor domains

Froilán M. Dopico, Vanni Noferini*, Ion Zaballa

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

1 Sitaatiot (Scopus)
33 Lataukset (Pure)

Abstrakti

Rosenbrock's theorem on polynomial system matrices is a classical result in linear systems theory that relates the Smith-McMillan form of a rational matrix G with the Smith form of an irreducible polynomial system matrix P giving rise to G and the Smith form of a submatrix of P. This theorem has been essential in the development of algorithms for computing the poles and zeros of a rational matrix via linearizations and generalized eigenvalue algorithms. In this paper, we extend Rosenbrock's theorem to system matrices P with entries in an arbitrary elementary divisor domain R and matrices G with entries in the field of fractions of R. These are the most general rings where the involved Smith-McMillan and Smith forms both exist and, so, where the problem makes sense. Moreover, we analyze in detail what happens when the system matrix is not irreducible. Finally, we explore how Rosenbrock's theorem can be extended when the system matrix P itself has entries in the field of fractions of the elementary divisor domain.

AlkuperäiskieliEnglanti
Sivut10-49
Sivumäärä40
JulkaisuLinear Algebra and Its Applications
Vuosikerta710
Varhainen verkossa julkaisun päivämäärä31 tammik. 2025
DOI - pysyväislinkit
TilaJulkaistu - 1 huhtik. 2025
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Rosenbrock's theorem on system matrices over elementary divisor domains'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä