Role extraction for digraphs via neighborhood pattern similarity

Giovanni Barbarino*, Vanni Noferini, Paul Van Dooren

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

82 Lataukset (Pure)

Abstrakti

We analyze the recovery of different roles in a network modeled by a directed graph, based on the so-called Neighborhood Pattern Similarity approach. Our analysis uses results from random matrix theory to show that, when assuming that the graph is generated as a particular stochastic block model with Bernoulli probability distributions for the different blocks, then the recovery is asymptotically correct when the graph has a sufficiently large dimension. Under these assumptions there is a sufficient gap between the dominant and dominated eigenvalues of the similarity matrix, which guarantees the asymptotic correct identification of the number of different roles. We also comment on the connections with the literature on stochastic block models, including the case of probabilities of order log(n)/n where n is the graph size. We provide numerical experiments to assess the effectiveness of the method when applied to practical networks of finite size.

AlkuperäiskieliEnglanti
Artikkeli054301
Sivut1-11
Sivumäärä11
JulkaisuPhysical Review E
Vuosikerta106
Numero5
DOI - pysyväislinkit
TilaJulkaistu - marrask. 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Role extraction for digraphs via neighborhood pattern similarity'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä