Robust Gyroscope-Aided Camera Self-Calibration

Santiago Cortés Reina, Arno Solin, Juho Kannala

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

2 Sitaatiot (Scopus)

Abstrakti

Camera calibration for estimating the intrinsic parameters and lens distortion is a prerequisite for various monocular vision applications including feature tracking and video stabilization. This application paper proposes a model for estimating the parameters on the fly by fusing gyroscope and camera data, both readily available in modern day smartphones. The model is based on joint estimation of visual feature positions, camera parameters, and the camera pose, the movement of which is assumed to follow the movement predicted by the gyroscope. Our model assumes the camera movement to be free, but continuous and differentiable, and individual features are assumed to stay stationary. The estimation is performed online using an extended Kalman filter, and it is shown to outperform existing methods in robustness and insensitivity to initialization. We demonstrate the method using simulated data and empirical data from an iPad.

AlkuperäiskieliEnglanti
Otsikko2018 21st International Conference on Information Fusion, FUSION 2018
KustantajaIEEE
Sivut772-779
Sivumäärä8
ISBN (painettu)9780996452762
DOI - pysyväislinkit
TilaJulkaistu - 5 syysk. 2018
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Information Fusion - Cambridge, Iso-Britannia
Kesto: 10 heinäk. 201813 heinäk. 2018
Konferenssinumero: 21

Conference

ConferenceInternational Conference on Information Fusion
LyhennettäFUSION
Maa/AlueIso-Britannia
KaupunkiCambridge
Ajanjakso10/07/201813/07/2018

Sormenjälki

Sukella tutkimusaiheisiin 'Robust Gyroscope-Aided Camera Self-Calibration'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä