Robust Adaptive Beamforming Maximizing the Worst-Case SINR Over Distributional Uncertainty Sets for Random INC Matrix And Signal Steering Vector

Yongwei Huang*, Wenzheng Yang, Sergiy A. Vorobyov

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

4 Sitaatiot (Scopus)

Abstrakti

The robust adaptive beamforming (RAB) problem is considered via the worst-case signal-to-interference-plus-noise ratio (SINR) maximization over distributional uncertainty sets for the random interference-plus-noise covariance (INC) matrix and desired signal steering vector. The distributional uncertainty set of the INC matrix accounts for the support and the positive semidefinite (PSD) mean of the distribution, and a similarity constraint on the mean. The distributional uncertainty set for the steering vector consists of the constraints on the known first- and second-order moments. The RAB problem is formulated as a minimization of the worst-case expected value of the SINR denominator achieved by any distribution, subject to the expected value of the numerator being greater than or equal to one for each distribution. Resorting to the strong duality of linear conic programming, such a RAB problem is rewritten as a quadratic matrix inequality problem. It is then tackled by iteratively solving a sequence of linear matrix inequality relaxation problems with the penalty term on the rank-one PSD matrix constraint. To validate the results, simulation examples are presented, and they demonstrate the improved performance of the proposed robust beamformer in terms of the array output SINR.

AlkuperäiskieliEnglanti
Otsikko2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
KustantajaIEEE
Sivut4918-4922
Sivumäärä5
ISBN (elektroninen)978-1-6654-0540-9
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Acoustics, Speech, and Signal Processing - Singapore, Singapore
Kesto: 23 toukok. 202227 toukok. 2022

Julkaisusarja

NimiIEEE International Conference on Acoustics, Speech and Signal Processing
Vuosikerta2022-May
ISSN (painettu)1520-6149

Conference

ConferenceIEEE International Conference on Acoustics, Speech, and Signal Processing
LyhennettäICASSP
Maa/AlueSingapore
KaupunkiSingapore
Ajanjakso23/05/202227/05/2022

Sormenjälki

Sukella tutkimusaiheisiin 'Robust Adaptive Beamforming Maximizing the Worst-Case SINR Over Distributional Uncertainty Sets for Random INC Matrix And Signal Steering Vector'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä