Reversible thermal strain control of oxygen vacancy ordering in an epitaxial La0.5Sr0.5CoO3-delta film

Sampo Inkinen, Lide Yao*, Sebastiaan van Dijken

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

6 Lataukset (Pure)

Abstrakti

Reversible topotactic transitions between oxygen-vacancy-ordered structures in transition-metal oxides provide a promising strategy for active manipulation of material properties. While transformations between various oxygen-deficient phases have been attained in bulk ABO(3-delta) perovskites, substrate clamping restricts the formation of distinct ordering patterns in epitaxial films. Using in situ scanning transmission electron microscopy (STEM), we image a thermally driven reversible transition in La0.5Sr0.5CoO3-delta films on SrTiO 3 from a multidomain brownmillerite (BM) structure to a uniform new phase wherein oxygen vacancies order in every third CoOx plane. Because temperature cycling is performed over a limited temperature range (25-385 degrees C), the oxygen deficiency parameter delta does not vary measurably. Under constant delta, the topotactic transition proceeds via local reordering of oxygen vacancies driven by thermal strain. Atomic-resolution imaging reveals a two-step process whereby alternating vertically and horizontally oriented BM domains first scale in size to accommodate the strain induced by different thermal expansions of La0.5Sr0.5CoO3-delta and SrTiO3, before the new phase nucleates and quickly grows above 360 degrees C. Upon cooling, the film transforms back to the mixed BM phase. As the structural transition is fully reversible and S does not change upon temperature cycling, we rule out electron-beam irradiation during STEM as the driving mechanism. Instead, our findings demonstrate that thermal strain can solely drive topotactic phase transitions in perovskite oxide films, presenting opportunities for switchable ionic devices.

AlkuperäiskieliEnglanti
Artikkeli046002
Sivumäärä8
JulkaisuPhysical Review Materials
Vuosikerta4
Numero4
DOI - pysyväislinkit
TilaJulkaistu - 28 huhtikuuta 2020
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Laitteet

OtaNano

Anna Rissanen (Manager)

Aalto-yliopisto

Laitteistot/tilat: Facility

  • Siteeraa tätä