Reversible crystalline-to-amorphous phase transformation in monolayer MoS2 under grazing ion irradiation

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Standard

Reversible crystalline-to-amorphous phase transformation in monolayer MoS2 under grazing ion irradiation. / Valerius, Philipp; Kretschmer, Silvan; Senkovskiy, Boris V.; Wu, Shilong; Hall, Joshua; Herman, Alexander; Ehlen, Niels; Ghorbani-Asl, Mahdi; Grueneis, Alexander; Krasheninnikov, Arkady V.; Michely, Thomas.

julkaisussa: 2D Materials, Vuosikerta 7, Nro 2, 025005, 04.2020.

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Harvard

Valerius, P, Kretschmer, S, Senkovskiy, BV, Wu, S, Hall, J, Herman, A, Ehlen, N, Ghorbani-Asl, M, Grueneis, A, Krasheninnikov, AV & Michely, T 2020, 'Reversible crystalline-to-amorphous phase transformation in monolayer MoS2 under grazing ion irradiation', 2D Materials, Vuosikerta. 7, Nro 2, 025005. https://doi.org/10.1088/2053-1583/ab5df4

APA

Valerius, P., Kretschmer, S., Senkovskiy, B. V., Wu, S., Hall, J., Herman, A., ... Michely, T. (2020). Reversible crystalline-to-amorphous phase transformation in monolayer MoS2 under grazing ion irradiation. 2D Materials, 7(2), [025005]. https://doi.org/10.1088/2053-1583/ab5df4

Vancouver

Author

Valerius, Philipp ; Kretschmer, Silvan ; Senkovskiy, Boris V. ; Wu, Shilong ; Hall, Joshua ; Herman, Alexander ; Ehlen, Niels ; Ghorbani-Asl, Mahdi ; Grueneis, Alexander ; Krasheninnikov, Arkady V. ; Michely, Thomas. / Reversible crystalline-to-amorphous phase transformation in monolayer MoS2 under grazing ion irradiation. Julkaisussa: 2D Materials. 2020 ; Vuosikerta 7, Nro 2.

Bibtex - Lataa

@article{d9796e11e4d1445784f41a4514bad477,
title = "Reversible crystalline-to-amorphous phase transformation in monolayer MoS2 under grazing ion irradiation",
abstract = "By combining scanning tunneling microscopy, low-energy electron diffraction, photoluminescence and Raman spectroscopy experiments with molecular dynamics simulations, a comprehensive picture of the structural and electronic response of a monolayer of MoS2 to 500 eV Xe+ irradiation is obtained. The MoS2 layer is epitaxially grown on graphene/Ir(1 1 1) and analyzed before and after irradiation in situ under ultra-high vacuum conditions. Through optimized irradiation conditions using low-energy ions with grazing trajectories, amorphization of the monolayer is induced already at low ion fluences of ions cm(-2) and without inducing damage underneath the MoS2 layer. The crystalline-to-amorphous transformation is accompanied by changes in the electronic properties from semiconductor-to-metal and an extinction of photoluminescence. Upon thermal annealing, the re-crystallization occurs with restoration of the semiconducting properties, but residual defects prevent the recovery of photoluminescence.",
keywords = "MoS2, molecular dynamics simulation, graphene, Ir(111), ion irradiation, scanning tunneling microscopy, phase transformation, TRANSITION, EVOLUTION",
author = "Philipp Valerius and Silvan Kretschmer and Senkovskiy, {Boris V.} and Shilong Wu and Joshua Hall and Alexander Herman and Niels Ehlen and Mahdi Ghorbani-Asl and Alexander Grueneis and Krasheninnikov, {Arkady V.} and Thomas Michely",
note = "| openaire: EC/H2020/648589/EU//SUPER-2D",
year = "2020",
month = "4",
doi = "10.1088/2053-1583/ab5df4",
language = "English",
volume = "7",
journal = "2 D Materials",
issn = "2053-1583",
publisher = "IOP Publishing Ltd.",
number = "2",

}

RIS - Lataa

TY - JOUR

T1 - Reversible crystalline-to-amorphous phase transformation in monolayer MoS2 under grazing ion irradiation

AU - Valerius, Philipp

AU - Kretschmer, Silvan

AU - Senkovskiy, Boris V.

AU - Wu, Shilong

AU - Hall, Joshua

AU - Herman, Alexander

AU - Ehlen, Niels

AU - Ghorbani-Asl, Mahdi

AU - Grueneis, Alexander

AU - Krasheninnikov, Arkady V.

AU - Michely, Thomas

N1 - | openaire: EC/H2020/648589/EU//SUPER-2D

PY - 2020/4

Y1 - 2020/4

N2 - By combining scanning tunneling microscopy, low-energy electron diffraction, photoluminescence and Raman spectroscopy experiments with molecular dynamics simulations, a comprehensive picture of the structural and electronic response of a monolayer of MoS2 to 500 eV Xe+ irradiation is obtained. The MoS2 layer is epitaxially grown on graphene/Ir(1 1 1) and analyzed before and after irradiation in situ under ultra-high vacuum conditions. Through optimized irradiation conditions using low-energy ions with grazing trajectories, amorphization of the monolayer is induced already at low ion fluences of ions cm(-2) and without inducing damage underneath the MoS2 layer. The crystalline-to-amorphous transformation is accompanied by changes in the electronic properties from semiconductor-to-metal and an extinction of photoluminescence. Upon thermal annealing, the re-crystallization occurs with restoration of the semiconducting properties, but residual defects prevent the recovery of photoluminescence.

AB - By combining scanning tunneling microscopy, low-energy electron diffraction, photoluminescence and Raman spectroscopy experiments with molecular dynamics simulations, a comprehensive picture of the structural and electronic response of a monolayer of MoS2 to 500 eV Xe+ irradiation is obtained. The MoS2 layer is epitaxially grown on graphene/Ir(1 1 1) and analyzed before and after irradiation in situ under ultra-high vacuum conditions. Through optimized irradiation conditions using low-energy ions with grazing trajectories, amorphization of the monolayer is induced already at low ion fluences of ions cm(-2) and without inducing damage underneath the MoS2 layer. The crystalline-to-amorphous transformation is accompanied by changes in the electronic properties from semiconductor-to-metal and an extinction of photoluminescence. Upon thermal annealing, the re-crystallization occurs with restoration of the semiconducting properties, but residual defects prevent the recovery of photoluminescence.

KW - MoS2

KW - molecular dynamics simulation

KW - graphene

KW - Ir(111)

KW - ion irradiation

KW - scanning tunneling microscopy

KW - phase transformation

KW - TRANSITION

KW - EVOLUTION

U2 - 10.1088/2053-1583/ab5df4

DO - 10.1088/2053-1583/ab5df4

M3 - Article

VL - 7

JO - 2 D Materials

JF - 2 D Materials

SN - 2053-1583

IS - 2

M1 - 025005

ER -

ID: 40548650