Abstrakti
Remote monitoring of vital signs has a wide range of applications. In this paper we propose a method to identify respiratory patterns from low-resolution thermal video data using a nearest neighbor data association (NNDA) and nearest neighbor Kalman filter (NNKF) based algorithms along with multi-class support vector machine (SVM). The method in this work is evaluated against breathing belt data as a reference, collected from healthy volunteers. Correlation of the proposed method with airflow derived from the breathing belt was found to be 0.7. The SVM classifier is able to distinguish between the breathing patterns from derived airflow with 60\% accuracy.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the 28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2020 |
Kustantaja | i6doc.com |
Sivut | 469-474 |
Sivumäärä | 6 |
ISBN (elektroninen) | 9782875870742 |
Tila | Julkaistu - 2020 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning - Virtual, Bruges, Belgia Kesto: 2 lokak. 2020 → 4 lokak. 2020 Konferenssinumero: 28 |
Conference
Conference | European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning |
---|---|
Lyhennettä | ESANN |
Maa/Alue | Belgia |
Kaupunki | Bruges |
Ajanjakso | 02/10/2020 → 04/10/2020 |