Resource frequency prediction in healthcare: Machine learning approach

Daniel Vieira, Jaakko Hollmen

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

4 Sitaatiot (Scopus)

Abstrakti

Determining the minimal amount of resources needed to ensure minimal number of bottlenecks in the patient flow not only promotes patient satisfaction but also provides financial benefits to hospitals. The increase of data gathering by healthcare facilities in the last years have brought new opportunities to apply machine learning techniques to tackle this problem. This work makes use of data gathered from the Oulu University Hospital in Finland between 2011 and 2014 to study the effectiveness of machine learning techniques to predict resources usage. This work investigates the problem of resource frequency prediction and compares the performance of Nearest Neighbours and Random Forest. The application of data clustering as a preprocessing step is also explored as a way to improve the prediction accuracy of resources whose behavior change over time. The results indicate that 1) highly frequented resources can be predicted with higher accuracy than the lowly frequented resources, 2) the Random Forest have similar performance to the Nearest Neighbours although Random Forest performs better, 3) clustering improves the performance of the Nearest Neighbours but not of Random Forest, and 4) if averages are used to determine the resource frequency then cluster averages yields higher accuracy than all data averages.

AlkuperäiskieliEnglanti
OtsikkoProceedings - IEEE 29th International Symposium on Computer-Based Medical Systems, CBMS 2016
KustantajaIEEE
Sivut88-93
Sivumäärä6
Vuosikerta2016-August
ISBN (elektroninen)9781467390361
DOI - pysyväislinkit
TilaJulkaistu - 16 elok. 2016
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIEEE Inernational Symposium on Computer-Based Medical Systems - Dublin, Republic of Ireland and Belfast, United Kingdom, Belfast, Irlanti
Kesto: 20 kesäk. 201622 kesäk. 2016
Konferenssinumero: 29
http://www.cbms2016.org/

Conference

ConferenceIEEE Inernational Symposium on Computer-Based Medical Systems
LyhennettäCBMS
Maa/AlueIrlanti
KaupunkiBelfast
Ajanjakso20/06/201622/06/2016
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Resource frequency prediction in healthcare: Machine learning approach'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä