Residual Learning from Demonstration: Adapting DMPs for Contact-rich Manipulation

Todor Davchev*, Kevin Sebastian Luck, Michael Burke, Franziska Meier, Stefan Schaal, Subramanian Ramamoorthy

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

4 Sitaatiot (Scopus)


Manipulation skills involving contact and friction are inherent to many robotics tasks. Using the class of motor primitives for peg-in-hole like insertions, we study how robots can learn such skills. Dynamic Movement Primitives (DMP) are a popular way of extracting such policies through behaviour cloning (BC) but can struggle in the context of insertion. Policy adaptation strategies such as residual learning can help improve the overall performance of policies in the context of contact-rich manipulation. However, it is not clear how to best do this with DMPs. As a result, we consider several possible ways for adapting a DMP formulation and propose 'residual Learning from Demonstration' (rLfD), a framework that combines DMPs with Reinforcement Learning (RL) to learn a residual correction policy. Our evaluations suggest that applying residual learning directly in task space and operating on the full pose of the robot can significantly improve the overall performance of DMPs. We show that rLfD offers a gentle to the joints solution that improves the task success and generalisation of DMPs and enables transfer to different geometries and frictions through few-shot task adaptation. The proposed framework is evaluated on a set of tasks. A simulated robot and a physical robot have to successfully insert pegs, gears and plugs into their respective sockets.

JulkaisuIEEE Robotics and Automation Letters
DOI - pysyväislinkit
TilaJulkaistu - 1 huhtik. 2022
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu


Sukella tutkimusaiheisiin 'Residual Learning from Demonstration: Adapting DMPs for Contact-rich Manipulation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä