Relaxation and Integral Representation for Functionals of Linear Growth on Metric Measure spaces

Heikki Hakkarainen, Juha Kinnunen, Panu Lahti, Pekka Lehtelä

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

18 Sitaatiot (Scopus)
205 Lataukset (Pure)

Abstrakti

This article studies an integral representation of functionals of linear growth on metric measure spaces with a doubling measure and a Poincaré inequality. Such a functional is defined via relaxation, and it defines a Radon measure on the space. For the singular part of the functional, we get the expected integral representation with respect to the variation measure. A new feature is that in the representation for the absolutely continuous part, a constant appears already in the weighted Euclidean case. As an application we show that in a variational minimization problem involving the functional, boundary values can be presented as a penalty term.
AlkuperäiskieliEnglanti
Artikkeli13
Sivut288–313
JulkaisuANALYSIS AND GEOMETRY IN METRIC SPACES
Vuosikerta2016
Numero4
DOI - pysyväislinkit
TilaJulkaistu - 2016
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Relaxation and Integral Representation for Functionals of Linear Growth on Metric Measure spaces'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä