Relativistic correction scheme for core-level binding energies from GW

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

5 Sitaatiot (Scopus)
1 Lataukset (Pure)

Abstrakti

We present a relativistic correction scheme to improve the accuracy of 1s core-level binding energies calculated from Green's function theory in the GW approximation, which does not add computational overhead. An element-specific corrective term is derived as the difference between the 1s eigenvalues obtained from the self-consistent solutions to the non- or scalar-relativistic Kohn-Sham equations and the four-component Dirac-Kohn-Sham equations for a free neutral atom. We examine the dependence of this corrective term on the molecular environment and the amount of exact exchange in hybrid exchange-correlation functionals. This corrective term is then added as a perturbation to the quasiparticle energies from partially self-consistent and single-shot GW calculations. We show that this element-specific relativistic correction, when applied to a previously reported benchmark set of 65 core-state excitations [D. Golze et al., J. Phys. Chem. Lett. 11, 1840-1847 (2020)], reduces the mean absolute error (MAE) with respect to the experiment from 0.55 eV to 0.30 eV and eliminates the species dependence of the MAE, which otherwise increases with the atomic number. The relativistic corrections also reduce the species dependence for the optimal amount of exact exchange in the hybrid functional used as a starting point for the single-shot G0W0 calculations. Our correction scheme can be transferred to other methods, which we demonstrate for the delta self-consistent field (ΔSCF) approach based on density functional theory.

AlkuperäiskieliEnglanti
Artikkeli114110
Sivut1-15
Sivumäärä15
JulkaisuThe Journal of chemical physics
Vuosikerta153
Numero11
DOI - pysyväislinkit
TilaJulkaistu - 21 syyskuuta 2020
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Relativistic correction scheme for core-level binding energies from GW'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä