Relations and bounds for the zeros of graph polynomials using vertex orbits

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

  • Matthias Dehmer
  • Frank Emmert-Streib
  • Abbe Mowshowitz
  • Aleksandar Ilić
  • Zengqiang Chen
  • Guihai Yu
  • Lihua Feng
  • Modjtaba Ghorbani
  • Kurt Varmuza
  • Jin Tao

Organisaatiot

  • Swiss Distance University of Applied Sciences
  • Nankai University
  • Private University for Health Sciences, Medical Informatics and Technology
  • Tampere University
  • Facebook Inc
  • Guizhou University of Finance and Economics
  • Teacher Training University
  • Vienna University of Technology
  • Peking University
  • City College of New York

Kuvaus

In this paper, we prove bounds for the unique, positive zero of OG (z):=1−OG(z), where OG(z) is the so-called orbit polynomial [1]. The orbit polynomial is based on the multiplicity and cardinalities of the vertex orbits of a graph. In [1], we have shown that the unique, positive zero δ ≤ 1 of OG (z) can serve as a meaningful measure of graph symmetry. In this paper, we study special graph classes with a specified number of orbits and obtain bounds on the value of δ.

Yksityiskohdat

AlkuperäiskieliEnglanti
Artikkeli125239
Sivumäärä14
JulkaisuApplied Mathematics and Computation
Vuosikerta380
TilaJulkaistu - 1 syyskuuta 2020
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

ID: 42833572