Abstrakti
Active transmitter-receiver (TX-RX) subset selection facilitates efficient resource use and adaptation to varying target and propagation environments in distributed multiple-input multiple-output (MIMO) radar systems. The problem has been addressed in the literature and objective functions related to radar tasks that depend on the signal-to-interference-plus-noise ratio (SINR) have been proposed. The SINR values observed at the receivers can be estimated assuming a particular propagation environment and target models. In this paper, a novel machine learning approach is proposed in which no such assumptions are needed. We formulate the TX-RX subset selection as a multi-armed bandit (MAB) problem and further extend it to the combinatorial MAB framework. A variety of reinforcement learning algorithms developed for the MAB problem are employed to learn the optimal subset in real-time. It is shown that such algorithms can be effectively used for the TX-RX subset selection problem even in non-stationary scenarios.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2020 IEEE International Radar Conference, RADAR 2020 |
Kustantaja | IEEE |
Sivut | 1040-1045 |
Sivumäärä | 6 |
ISBN (elektroninen) | 9781728168128 |
DOI - pysyväislinkit | |
Tila | Julkaistu - huhtik. 2020 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | IEEE Radar Conference - Washington, Yhdysvallat Kesto: 28 huhtik. 2020 → 30 huhtik. 2020 |
Conference
Conference | IEEE Radar Conference |
---|---|
Lyhennettä | RADAR |
Maa/Alue | Yhdysvallat |
Kaupunki | Washington |
Ajanjakso | 28/04/2020 → 30/04/2020 |