Reinforcement learning approach to implementation of individual controllers in data centre control system

Yulia Berezovskaya, Chen Wei Yang, Valeriy Vyatkin

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Contemporary data centres consume electricity on an industrial scale and require control to improve energy efficiency and maintain high availability. The article proposes an idea and structure of the framework supporting development and validation of the multi-agent control for the energy-efficient data centre. The framework comprises two subsystems: the modelling toolbox and the controlling toolbox. This work focuses on such essential components of the controlling toolbox, as an individual controller. The reinforcement learning approach is applied to the controllers' implementation. The server fan controller, named SF agent, is implemented based on the framework infrastructure and reinforcement learning approach. The agent's capability of energy-saving is demonstrated.

AlkuperäiskieliEnglanti
Otsikko2022 IEEE 20th International Conference on Industrial Informatics, INDIN 2022
KustantajaIEEE
Sivut41-46
Sivumäärä6
ISBN (elektroninen)978-1-7281-7568-3
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Industrial Informatics - Perth, Austraalia
Kesto: 25 heinäk. 202228 heinäk. 2022

Conference

ConferenceIEEE International Conference on Industrial Informatics
LyhennettäINDIN
Maa/AlueAustraalia
KaupunkiPerth
Ajanjakso25/07/202228/07/2022

Sormenjälki

Sukella tutkimusaiheisiin 'Reinforcement learning approach to implementation of individual controllers in data centre control system'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä