Abstrakti
We consider the Traveling Salesman Problem with Neighborhoods (TSPN) in doubling metrics. The goal is to find a shortest tour that visits each of a given collection of subsets (regions or neighborhoods) in the underlying metric space. We give a randomized polynomial time approximation scheme (PTAS) when the regions are fat weakly disjoint. This notion of regions was first defined when a QPTAS was given for the problem in [SODA 2010: Chan and Elbassioni]. We combine the techniques in the previous work, together with the recent PTAS for TSP [STOC 2012: Bartal, Gottlieb and Krauthgamer] to achieve a PTAS for TSPN. Moreover, more refined procedures are used to improve the dependence of the running time on the doubling dimension k from the previous exp[O(1)k2] (even for just TSP) to exp[O(1)o(klogk)].
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016 |
Toimittajat | Robert Krauthgamer |
Kustantaja | ACM |
Sivut | 754-765 |
Sivumäärä | 12 |
ISBN (elektroninen) | 9781510819672 |
Tila | Julkaistu - 2016 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | ACM-SIAM Symposium on Discrete Algorithms - Arlington, Yhdysvallat Kesto: 10 tammik. 2016 → 12 tammik. 2016 Konferenssinumero: 27 |
Julkaisusarja
Nimi | Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms |
---|---|
Vuosikerta | 2 |
Conference
Conference | ACM-SIAM Symposium on Discrete Algorithms |
---|---|
Lyhennettä | SODA |
Maa/Alue | Yhdysvallat |
Kaupunki | Arlington |
Ajanjakso | 10/01/2016 → 12/01/2016 |