Rediscovering Affordance: A Reinforcement Learning Perspective

Yi Chi Liao, Kashyap Todi, Aditya Acharya, Antti Keurulainen, Andrew Howes, Antti Oulasvirta

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

3 Sitaatiot (Scopus)

Abstrakti

Affordance refers to the perception of possible actions allowed by an object. Despite its relevance to human-computer interaction, no existing theory explains the mechanisms that underpin affordance-formation; that is, how affordances are discovered and adapted via interaction. We propose an integrative theory of affordance-formation based on the theory of reinforcement learning in cognitive sciences. The key assumption is that users learn to associate promising motor actions to percepts via experience when reinforcement signals (success/failure) are present. They also learn to categorize actions (e.g., "rotating"a dial), giving them the ability to name and reason about affordance. Upon encountering novel widgets, their ability to generalize these actions determines their ability to perceive affordances. We implement this theory in a virtual robot model, which demonstrates human-like adaptation of affordance in interactive widgets tasks. While its predictions align with trends in human data, humans are able to adapt affordances faster, suggesting the existence of additional mechanisms.

AlkuperäiskieliEnglanti
OtsikkoCHI 2022 - Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
KustantajaACM
Sivumäärä15
ISBN (elektroninen)978-1-4503-9157-3
DOI - pysyväislinkit
TilaJulkaistu - 29 huhtik. 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaACM SIGCHI Annual Conference on Human Factors in Computing Systems - Virtual, Online, New Orleans, Yhdysvallat
Kesto: 30 huhtik. 20225 toukok. 2022

Conference

ConferenceACM SIGCHI Annual Conference on Human Factors in Computing Systems
LyhennettäACM CHI
Maa/AlueYhdysvallat
KaupunkiNew Orleans
Ajanjakso30/04/202205/05/2022

Sormenjälki

Sukella tutkimusaiheisiin 'Rediscovering Affordance: A Reinforcement Learning Perspective'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä