Recursive Bayesian Filters for RSS-Based Device-Free Localization and Tracking

Ossi Kaltiokallio, Roland Hostettler, Neal Patwari, Riku Jäntti

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

5 Sitaatiot (Scopus)
158 Lataukset (Pure)

Abstrakti

Received signal strength (RSS)-based device-free localization applications utilize the communication between wireless devices for locating people within the monitored area. The technology is based on the fact that humans cause changes in properties of the wireless channel which is observed in the RSS, enabling localization of people without requiring them to carry any sensor, tag or device. Typically this inverse problem is solved using an empirical model that relates the RSS to location of the sensors and person, and utilizing either an imaging method or a particle filter (PF) for positioning. In this paper, we present an extended Kalman filtering (EKF) solution that incorporates some of the beneficial properties of the PF but has a lower computational overhead. In order to make the EKF work, we also need to reconsider how the measurements are sampled and processed, and a new processing scheme is proposed. The developments are validated using simulations and experimental data, and the results imply: i) the non-linear filters outperform a popular imaging method; ii) the robustness of the EKF and PF is improved using the proposed processing scheme; and iii) the EKF achieves similar performance as the PF as long as the new processing scheme is used.

AlkuperäiskieliEnglanti
OtsikkoIPIN 2018 - 9th International Conference on Indoor Positioning and Indoor Navigation
JulkaisupaikkaUnited States
KustantajaIEEE
ISBN (elektroninen)9781538656358
DOI - pysyväislinkit
TilaJulkaistu - 13 marraskuuta 2018
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaInternational Conference on Indoor Positioning and Indoor Navigation - Nantes, Ranska
Kesto: 24 syyskuuta 201827 syyskuuta 2018
Konferenssinumero: 9

Julkaisusarja

NimiInternational Conference on Indoor Positioning and Indoor Navigation
ISSN (painettu)2162-7347
ISSN (elektroninen)2471-917X

Conference

ConferenceInternational Conference on Indoor Positioning and Indoor Navigation
LyhennettäIPIN
Maa/AlueRanska
KaupunkiNantes
Ajanjakso24/09/201827/09/2018

Sormenjälki

Sukella tutkimusaiheisiin 'Recursive Bayesian Filters for RSS-Based Device-Free Localization and Tracking'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä