Reconstructing analytic dinosaurs : polynomial eigenvalue decomposition for eigenvalues with unmajorised ground truth

Sebastian Schlecht, Stephan Weiss

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

This paper proposes a novel method for accurately estimating the ground truth analytic eigenvalues from estimated space-time covariance matrices, where the estimation process obscures any intersection of eigenvalues with probability one. The approach involves grouping sufficiently separated, bin-wise eigenvalues into segments that belong to analytic functions and then solves a permutation problem to align these segments. By leveraging an inverse partial discrete Fourier transform and a linear assignment algorithm, the proposed EigenBone method retrieves analytic eigenvalues efficiently and accurately. Experimental results demonstrate the effectiveness of this approach in accurately reconstructing eigenvalues from noisy estimates. Overall, the proposed method offers a robust solution for approximating analytic eigenvalues in scenarios where state-of-the-art methods may fail.
AlkuperäiskieliEnglanti
Otsikko32nd European Signal Processing Conference, EUSIPCO 2024 - Proceedings
KustantajaIEEE
Sivut1287-1291
Sivumäärä5
ISBN (elektroninen)978-9-4645-9361-7
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEuropean Signal Processing Conference - Lyon, Ranska
Kesto: 26 elok. 202430 elok. 2024
Konferenssinumero: 32

Julkaisusarja

NimiEUSIPCO
ISSN (elektroninen)2076-1465

Conference

ConferenceEuropean Signal Processing Conference
LyhennettäEUSIPCO
Maa/AlueRanska
KaupunkiLyon
Ajanjakso26/08/202430/08/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Reconstructing analytic dinosaurs : polynomial eigenvalue decomposition for eigenvalues with unmajorised ground truth'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä