Real-Time Zero-Phase Digital Filter Using Recurrent Neural Network

Tantep Sinjanakhom, Sorawat Chivapreecha

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

This paper proposes a method to design and implement a zero-phase digital filter that can run in a real-time system. Generally, zero-phase filters are designed for non-causal systems only as the time-reversal operations are required. Thus, the typical usage of these filters is for offline applications. For this reason, we propose a real-time zero-phase digital filter that is designed based on a recurrent neural network model, particularly the gated recurrent units. The model learns to perform zero-phase filtering by using training data made from the filtered signals that are generated by using the conventionally designed zero-phase filter. The original digital filter used to create the dataset is an IIR filter performing forward-backward filtering. The best trained model yields the mean absolute loss values at approximately 0.001 and can process at least 30 times faster than real-time. Furthermore, the trained model was implemented as a 3-band zero-phase graphic equalizer to exhibit one of its applications.

AlkuperäiskieliEnglanti
OtsikkoProceedings - 2023 19th IEEE Asia Pacific Conference on Circuits and Systems, APCCAS 2023
KustantajaIEEE
Sivut348-352
Sivumäärä5
ISBN (elektroninen)979-8-3503-8119-1
DOI - pysyväislinkit
TilaJulkaistu - 1 toukok. 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE Asia Pacific Conference on Circuits and Systems - Hyderabad, Intia
Kesto: 19 marrask. 202322 marrask. 2023

Julkaisusarja

NimiProceedings / IEEE Asia-Pacific Conference on Circuits and Systems
ISSN (elektroninen)2768-3516

Conference

ConferenceIEEE Asia Pacific Conference on Circuits and Systems
LyhennettäAPCCAS
Maa/AlueIntia
KaupunkiHyderabad
Ajanjakso19/11/202322/11/2023

Sormenjälki

Sukella tutkimusaiheisiin 'Real-Time Zero-Phase Digital Filter Using Recurrent Neural Network'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä