Ready Player One: UAV-Clustering-Based Multi-Task Offloading for Vehicular VR/AR Gaming

Long Hu, Yuanwen Tian, Jun Yang*, Tarik Taleb, Lin Xiang, Yixue Hao

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

79 Sitaatiot (Scopus)

Abstrakti

With rapid development of unmanned aerial vehicle (UAV) technology, application of UAVs for task offloading has received increasing interest in academia. However, real-time interaction between one UAV and the mobile edge computing node is required for processing the tasks of mobile end users, which significantly increases the system overhead and is unable to meet the demands of large-scale artificial intelligence (AI)-based applications. To tackle this problem, in this article, we propose a new architecture for UAV clustering to enable efficient multi-modal multi-task offloading. With the proposed architecture, the computing, caching, and communication resources are collaboratively optimized using Al-based decision making. This not only increases the efficiency of UAV clusters, but also provides insight into the fusion of computation and communication.

AlkuperäiskieliEnglanti
Artikkeli8726071
Sivut42-48
Sivumäärä7
JulkaisuIEEE Network
Vuosikerta33
Numero3
DOI - pysyväislinkit
TilaJulkaistu - 1 toukok. 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Ready Player One: UAV-Clustering-Based Multi-Task Offloading for Vehicular VR/AR Gaming'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä