Rao-Blackwellized Monte Carlo Data Association With Deep Metric For Object Tracking

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

We propose a deep Rao-Blackwellized Monte Carlo data association particle filter (DeepRBMCDA) which is a modification of the existing RBMCDA using Hungarian association. It uses YOLOv7 detected bounding box with deep ReIdentification (ReID) descriptors to track detected objects in Bayesian way. In our work, we demonstrate our performance on a diverse GMOT-40 dataset which contains sequences of varying class objects of similar appearance. We evaluate our tracker and compare its performance with state-of-the-art trackers. We obtain comparable multi object tracking accuracy (MOTA), multi object tracking precision (MOTP), localization accuracy (LocA), and multi object detection accuracy (MODA), improved mostly tracked (MT), reduced mostly lost (ML), and lowest fragmentation (Frag). We also perform the ablation study which reports highest higher order tracking accuracy (HOTA), HOTA combined LocA (HOTALocA), MOTA, identity switching (IDSW), MT, ML, Frag, and identity based F1 score (IDFI) on tracking ground-truth labels. Using particle filter for object tracking provides robustness which can be helpful in diverse dynamic tracking scenarios.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 2023 IEEE 33rd International Workshop on Machine Learning for Signal Processing, MLSP 2023
ToimittajatDanilo Comminiello, Michele Scarpiniti
KustantajaIEEE
Sivut1-6
Sivumäärä6
ISBN (elektroninen)979-8-3503-2411-2
ISBN (painettu)979-8-3503-2412-9
DOI - pysyväislinkit
TilaJulkaistu - 23 lokak. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Workshop on Machine Learning for Signal Processing - Rome, Italia
Kesto: 17 syysk. 202320 syysk. 2023

Julkaisusarja

NimiIEEE International Workshop on Machine Learning for Signal Processing
ISSN (elektroninen)2161-0371

Conference

ConferenceIEEE International Workshop on Machine Learning for Signal Processing
LyhennettäMLSP
Maa/AlueItalia
KaupunkiRome
Ajanjakso17/09/202320/09/2023

Sormenjälki

Sukella tutkimusaiheisiin 'Rao-Blackwellized Monte Carlo Data Association With Deep Metric For Object Tracking'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä