Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of MCMC

Aki Vehtari*, Andrew Gelman, Daniel Simpson, Bob Carpenter, Paul-Christian Burkner

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

44 Sitaatiot (Scopus)
82 Lataukset (Pure)

Abstrakti

Markov chain Monte Carlo is a key computational tool in Bayesian statistics, but it can be challenging to monitor the convergence of an iterative stochastic algorithm. In this paper we show that the convergence diagnostic R of Gelman and Rubin (1992) has serious flaws. Traditional R will fail to correctly diagnose convergence failures when the chain has a heavy tail or when the variance varies across the chains. In this paper we propose an alternative rank-based diagnostic that fixes these problems. We also introduce a collection of quantile-based local efficiency measures, along with a practical approach for computing Monte Carlo error estimates for quantiles. We suggest that common trace plots should be replaced with rank plots from multiple chains. Finally, we give recommendations for how these methods should be used in practice.
AlkuperäiskieliEnglanti
Sivut667-718
Sivumäärä52
JulkaisuBayesian Analysis
Vuosikerta16
Numero2
DOI - pysyväislinkit
TilaJulkaistu - kesäkuuta 2021
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of MCMC'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä