Projekteja vuodessa
Abstrakti
Randomized quadratures for integrating functions in Sobolev spaces of order , where the integrability condition is with respect to the Gaussian measure, are considered. In this function space, the optimal rate for the worst-case root-mean-squared error (RMSE) is established. Here, optimality is for a general class of quadratures, in which adaptive non-linear algorithms with a possibly varying number of function evaluations are also allowed. The optimal rate is given by showing matching bounds. First, a lower bound on the worst-case RMSE of is proven, where denotes an upper bound on the expected number of function evaluations. It turns out that a suitably randomized trapezoidal rule attains this rate, up to a logarithmic factor. A practical error estimator for this trapezoidal rule is also presented. Numerical results support our theory.
Alkuperäiskieli | Englanti |
---|---|
Sivumäärä | 22 |
Julkaisu | Mathematics of Computation |
DOI - pysyväislinkit | |
Tila | Sähköinen julkaisu (e-pub) ennen painettua julkistusta - 26 lokak. 2023 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Randomizing the Trapezoidal Rule Gives the Optimal Rmse Rate in Gaussian Sobolev Spaces'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Aktiivinen
-
Hyvönen Nuutti: New frontiers in Bayesian optimal design for applied inverse problems
Hyvönen, N. (Vastuullinen tutkija), Jääskeläinen, A. (Projektin jäsen), Suzuki, Y. (Projektin jäsen), Hirvensalo, M. (Projektin jäsen) & Puska, J.-P. (Projektin jäsen)
01/09/2022 → 31/08/2026
Projekti: Academy of Finland: Other research funding