Randomizing the Trapezoidal Rule Gives the Optimal Rmse Rate in Gaussian Sobolev Spaces

Takashi Goda, Yoshihito Kazashi, Yuya Suzuki

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

2 Sitaatiot (Scopus)

Abstrakti

Randomized quadratures for integrating functions in Sobolev spaces of order , where the integrability condition is with respect to the Gaussian measure, are considered. In this function space, the optimal rate for the worst-case root-mean-squared error (RMSE) is established. Here, optimality is for a general class of quadratures, in which adaptive non-linear algorithms with a possibly varying number of function evaluations are also allowed. The optimal rate is given by showing matching bounds. First, a lower bound on the worst-case RMSE of is proven, where denotes an upper bound on the expected number of function evaluations. It turns out that a suitably randomized trapezoidal rule attains this rate, up to a logarithmic factor. A practical error estimator for this trapezoidal rule is also presented. Numerical results support our theory.
AlkuperäiskieliEnglanti
Sivumäärä22
JulkaisuMathematics of Computation
DOI - pysyväislinkit
TilaSähköinen julkaisu (e-pub) ennen painettua julkistusta - 26 lokak. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Randomizing the Trapezoidal Rule Gives the Optimal Rmse Rate in Gaussian Sobolev Spaces'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä