Random Projection in Dimensionality Reduction: Applications to Image and Text Data

    Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

    Abstrakti

    Random projections have recently emerged as a powerful method for dimensionality reduction. Theoretical results indicate that the method preserves distances quite nicely; however, empirical results are sparse. We present experimental results on using random projection as a dimensionality reduction tool in a number of cases, where the high dimensionality of the data would otherwise lead to burden-some computations. Our application areas are the processing of both noisy and noiseless images, and information retrieval in text documents. We show that projecting the data onto a random lower-dimensional subspace yields results comparable to conventional dimensionality reduction methods such as principal component analysis: the similarity of data vectors is preserved well under random projection. However, using random projections is computationally significantly less expensive than using, e.g., principal component analysis. We also show experimentally that using a sparse random matrix gives additional computational savings in random projection.
    AlkuperäiskieliEnglanti
    OtsikkoKDD '01: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    KustantajaACM
    Sivut245-250
    ISBN (elektroninen)978-1-58113-391-2
    DOI - pysyväislinkit
    TilaJulkaistu - 2001
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
    TapahtumaACM SIGKDD International Conference on Knowledge Discovery and Data Mining - San Francisco, Yhdysvallat
    Kesto: 26 elok. 200129 elok. 2001
    Konferenssinumero: 7

    Conference

    ConferenceACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    LyhennettäKDD
    Maa/AlueYhdysvallat
    KaupunkiSan Francisco
    Ajanjakso26/08/200129/08/2001

    Tutkimusalat

    • dimensionality reduction
    • high-dimensional data
    • image data
    • random projection
    • text document data

    Sormenjälki

    Sukella tutkimusaiheisiin 'Random Projection in Dimensionality Reduction: Applications to Image and Text Data'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä