Abstrakti
Devoted to multi-task learning and structured output learning, operator-valued kernels provide a flexible tool to build vector-valued functions in the context of Reproducing Kernel Hilbert Spaces. To scale up these methods, we extend the celebrated Random Fourier Feature methodology to get an approximation of operator-valued kernels. We propose a general principle for Operator-valued Random Fourier Feature construction relying on a generalization of Bochner’s theorem for translation-invariant operator-valued Mercer kernels. We prove the uniform convergence of the kernel approximation for bounded and unbounded operator random Fourier features using appropriate Bernstein matrix concentration inequality. An experimental proof-of-concept shows the quality of the approximation and the efficiency of the corresponding linear models on example datasets.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the 8th Asian Conference on Machine Learning |
Toimittajat | Bob Durrant, Kee-Eung Kim |
Kustantaja | JMLR |
Sivut | 110-125 |
Tila | Julkaistu - 2016 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | ASIAN CONFERENCE ON MACHINE LEARNING - Hamilton, Uusi-Seelanti Kesto: 16 marrask. 2016 → 18 marrask. 2016 Konferenssinumero: 8 |
Julkaisusarja
Nimi | Proceedings of Machine Learning Research |
---|---|
Kustantaja | PMLR |
Vuosikerta | 63 |
ISSN (elektroninen) | 1938-7228 |
Conference
Conference | ASIAN CONFERENCE ON MACHINE LEARNING |
---|---|
Lyhennettä | ACML |
Maa/Alue | Uusi-Seelanti |
Kaupunki | Hamilton |
Ajanjakso | 16/11/2016 → 18/11/2016 |