Random Finite Set Approach to Signal Strength Based Passive Localization and Tracking

Ossi Kaltiokallio, Huseyin Yigitler, Jukka Talvitie, Mikko Valkama

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Radio frequency sensor networks can be utilized for locating and tracking people within coverage area of the network. The technology is based on the fact that humans alter properties of the wireless propagation channel which is observed in the channel estimates, enabling tracking without requiring people to carry any sensor, tag or device. Considerable efforts have been made to model the human induced perturbations to the channel and develop flexible models that adapt to the unique propagation environment to which the network is deployed in. This paper proposes a noteworthy conceptual shift in the design of passive localization and tracking systems as the focus is shifted from channel modeling to filter design. We approach the problem using random finite set theory enabling us to model detections, missed detections, false alarms and unknown data association in a rigorous manner. The Bayesian filtering recursion applied with random finite sets is presented and a computationally tractable Gaussian sum filter is developed. The development efforts of the paper are validated using experimental data and the results imply that the proposed approach can decrease the tracking error up to 48% with respect to a benchmark solution.

AlkuperäiskieliEnglanti
Otsikko2023 IEEE/ION Position, Location and Navigation Symposium, PLANS 2023
KustantajaIEEE
Sivut1215-1225
Sivumäärä11
ISBN (elektroninen)978-1-6654-1772-3
ISBN (painettu)978-1-6654-1773-0
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE/ION Position, Location and Navigation Symposium - Monterey, Yhdysvallat
Kesto: 24 huhtik. 202327 huhtik. 2023

Julkaisusarja

NimiIEEE/ION Position Location and Navigation Symposium
ISSN (painettu)2153-358X
ISSN (elektroninen)2153-3598

Conference

ConferenceIEEE/ION Position, Location and Navigation Symposium
LyhennettäPLANS
Maa/AlueYhdysvallat
KaupunkiMonterey
Ajanjakso24/04/202327/04/2023

Sormenjälki

Sukella tutkimusaiheisiin 'Random Finite Set Approach to Signal Strength Based Passive Localization and Tracking'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä