RACK: RApid clustering using K-means algorithm

Vikas K. Garg, M. N. Murty

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

The k-means algorithm is an extremely popular technique for clustering data. One of the major limitations of the k-means is that the time to cluster a given dataset D is linear in the number of clusters, k. In this paper, we employ height balanced trees to address this issue. Specifically, we make two major contributions, (a) we propose an algorithm, RACK (acronym for RApid Clustering using k-means), which takes time favorably comparable with the fastest known existing techniques, and (b) we prove an expected bound on the quality of clustering achieved using RACK. Our experimental results on large datasets strongly suggest that RACK is competitive with the k-means algorithm in terms of quality of clustering, while taking significantly less time.

AlkuperäiskieliEnglanti
Otsikko2009 IEEE International Conference on Automation Science and Engineering, CASE 2009
Sivut621-626
Sivumäärä6
DOI - pysyväislinkit
TilaJulkaistu - 2009
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Automation Science and Engineering - Bangalore, Intia
Kesto: 22 elok. 200925 elok. 2009

Conference

ConferenceIEEE International Conference on Automation Science and Engineering
LyhennettäCASE
Maa/AlueIntia
KaupunkiBangalore
Ajanjakso22/08/200925/08/2009

Sormenjälki

Sukella tutkimusaiheisiin 'RACK: RApid clustering using K-means algorithm'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä