Quantum work in the Bohmian framework

R. Sampaio, S. Suomela, T. Ala-Nissila, J. Anders, T. G. Philbin

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

9 Sitaatiot (Scopus)
117 Lataukset (Pure)


At nonzero temperature classical systems exhibit statistical fluctuations of thermodynamic quantities arising from the variation of the system's initial conditions and its interaction with the environment. The fluctuating work, for example, is characterized by the ensemble of system trajectories in phase space and, by including the probabilities for various trajectories to occur, a work distribution can be constructed. However, without phase-space trajectories, the task of constructing a work probability distribution in the quantum regime has proven elusive. Here we use quantum trajectories in phase space and define fluctuating work as power integrated along the trajectories, in complete analogy to classical statistical physics. The resulting work probability distribution is valid for any quantum evolution, including cases with coherences in the energy basis. We demonstrate the quantum work probability distribution and its properties with an exactly solvable example of a driven quantum harmonic oscillator. An important feature of the work distribution is its dependence on the initial statistical mixture of pure states, which is reflected in higher moments of the work. The proposed approach introduces a fundamentally different perspective on quantum thermodynamics, allowing full thermodynamic characterization of the dynamics of quantum systems, including the measurement process.

JulkaisuPhysical Review A
DOI - pysyväislinkit
TilaJulkaistu - 30 tammikuuta 2018
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin 'Quantum work in the Bohmian framework'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Siteeraa tätä

    Sampaio, R., Suomela, S., Ala-Nissila, T., Anders, J., & Philbin, T. G. (2018). Quantum work in the Bohmian framework. Physical Review A, 97(1), 1-8. [012131]. https://doi.org/10.1103/PhysRevA.97.012131