Quantum jump approach to microscopic heat engines

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

37 Lataukset (Pure)

Abstrakti

Modern technologies could soon make it possible to investigate the operation cycles of quantum heat engines by counting the photons that are emitted and absorbed by their working systems. Using the quantum jump approach to open-system dynamics, we show that such experiments would give access to a set of observables that determine the trade-off between power and efficiency in finite-time engine cycles. By analyzing the single-jump statistics of thermodynamic fluxes such as heat and entropy production, we obtain a family of general bounds on the power of microscopic heat engines. Our new bounds unify two earlier results and admit a transparent physical interpretation in terms of single-photon measurements. In addition, these bounds confirm that driving-induced coherence leads to an increase in dissipation that suppresses the efficiency of slowly driven quantum engines in the weak-coupling regime. A nanoscale heat engine based on a superconducting qubit serves as an experimentally relevant example and a guiding paradigm for the development of our theory.
AlkuperäiskieliEnglanti
Artikkeli033449
Sivumäärä15
JulkaisuPHYSICAL REVIEW RESEARCH
Vuosikerta2
Numero3
DOI - pysyväislinkit
TilaJulkaistu - 21 syyskuuta 2020
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin 'Quantum jump approach to microscopic heat engines'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä