Projekteja vuodessa
Abstrakti
We give a quantitative estimate for the quantum mean absolute deviation on hyperbolic surfaces of finite area in terms of geometric parameters such as the genus, number of cusps and injectivity radius. It implies a delocalisation result of quantum ergodicity type for eigenfunctions of the Laplacian on hyperbolic surfaces of finite area that Benjamini-Schramm converge to the hyperbolic plane. We show that this is generic for Mirzakhani’s model of random surfaces chosen uniformly with respect to the Weil-Petersson volume. Depending on the particular sequence of surfaces considered this gives a result of delocalisation of most cusp forms or of Eisenstein series.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 845–898 |
Sivumäärä | 54 |
Julkaisu | Mathematische Annalen |
Vuosikerta | 389 |
Numero | 1 |
Varhainen verkossa julkaisun päivämäärä | 9 heinäk. 2023 |
DOI - pysyväislinkit | |
Tila | Julkaistu - toukok. 2024 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Quantum ergodicity for Eisenstein series on hyperbolic surfaces of large genus'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 2 Aktiivinen
-
Sahlsten Tuomas AT-palkka: Quantum chaos of large and many body systems
Sahlsten, T. (Vastuullinen tutkija)
01/09/2022 → 31/08/2027
Projekti: RCF Academy Research Fellow (new)
-
Quantum chaos of large and many body systems
Sahlsten, T. (Vastuullinen tutkija)
01/09/2022 → 31/12/2025
Projekti: RCF Academy Research Fellow: Research costs